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THE PERFECT GAS. 

The characteristic equation of state. 

At temperatures that are considerably in excess of the critical temperature of a fluid, and also 

at very low pressures, the vapour of the fluid tends to obey the equation; 

       
  

 
           .  No gases in practice obey this law rigidly, but many gases tend 

towards it. An imaginary ideal gas which obey the law is called a perfect gas, and the 

equation , pv/T = R, is called the characteristic of state of a perfect gas. The constant R, is 

called the gas constant. The unit of R are N m/kg K or kJ/kg K. Each perfect gas has a 

different gas constant. 

The characteristic equation is usually written; 

          pv   = RT……1 

or for m kg. occupying V m
3
,  

pV  =  mRT ……………..2 

Another  form of the characteristic equation can be derived using the kilogram-mole as a unit. 

The kilogram-mole is defined as a quantity of gas equivalent to M kg. of the gas, where M is 

the molecular weight of the gas (e.g since the molecular weight of oxygen is 32, then 1 kg. 

mole of oxygen is equivalent 32 kg of oxygen).  From the definition of kilogram-mole, for m 

kg of a gas we have, 

                                             m  =  nM ………………3 



(where n is the number of moles) 

Note:  Since the standard of mass is the kg. kilogram-mole will be written simply as mole. 

Substituting for m from equation 3 in equation 2 gives; 

  pV    =   nMRT or  MR  =  
  

  
. 

Now Avogadro’s hypothesis state that the volume of 1 mole of any gas is the same as the 

volume of 1 mole of any other gas, when the gases are at the same temperature and pressure. 

Therefore V/n is the same for all gases at the same value of p and T. That is, the quantity  

pV/nT is a constant for all gases. This constant is called the universal gas constant and is 

given the symbol,  Ro. 

i.e                           MR  =  Ro  =  
  

  
  or pV = nRoT ………………4 

or since  MR  =  Ro then,    R =  
  

 
 ……………..5 

Experiment has shown that the volume of one mole of any perfect gas at 1 bar and 0
0
C is 

approximately 22.71 m
3
. Therefore from equation 4, 

  Ro = 
  

  
 = 

              

         
 = 8314.3 Nm/mole K. 

From equation 5 the gas constant for any gas can be found when the molecular weight is 

known, e,g for oxygen of molecular weight 32, the gas constant ,  

            R = 
  

 
 = 

    

  
 = 259.8 N m/ kg K. 

Ex. 1. A vessel of volume 0.2 m
3
 contain nitrogen at 1.013 bar and 15

0
C. If 0.2 kg of nitrogen 

is now pumped into the vessel, calculate the new pressure when the vessel has returned to its 

initial temperature. The molecular weight of nitrogen is 28, and it may be assumed to be a 

perfect gas. 

Solution: From equation 5, 

Gas constant  R  = Ro / M  = 8314/ 28 = 296.9 Nm/kg K, 

From equation 2, for the initial conditions, 

                p1V1  =  m1RT1. 

                   m1  =  p1V1 / RT1  =  
                

          
  = 0.237 kg. Where T1  =  15 + 273 = 288 K. 

0.2 kg of nitrogen are added hence, m2 = 0.2 + 0.237 = 0.437 kg. Then from equation 2, for 

the final conditions, 

                                                  P2V2  = m2RT2. 

But V2 = V1 and T2 = T1, 



                             p2 = 
     

  
  = 

                 

   
 =  i.e p2  =  

                 

         
  = 1.87 bar. 

 

Ex.2. 

0.01 kg of a certain perfect gas occupies a volume of 0.003 m3 at a pressure of 7 bar and a 

temperature of 131
0
C. Calculate the molecular weight of the gas. When the gas is allowed to 

expand until the pressure is 1 bar the final volume is 0.02 m3. Calculate the final temperature. 

Solution: From equation 2, 

  p1V1  = mRT1, 

                            R =   
    

   
       =      

             

         
  =  520 N m/kg K. Where T1 = 131 + 273 = 

404 K. 

Then from equation 5, 

  R  =  
  

 
,        M = 

  

 
  = 

    

   
 = 16. i.e Molecular weight = 16. From equation 2, 

                                               p2V2  = mRT2, 

   T2  = 
    

  
 = 

             

         
 = 384.5 K 

i.e, Final temperature = 384.5 – 273 = 111.5
0
C. 

3.  A non-reversible process occurs for which pressure and volume are correlated by the 

expression P =      
 

 
   where P is in bar and V is in m

3
. What amount of work will be 

done when volume changes from 2 to 4 m
3
? 
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)       (    

 

 
)              

Work done,       ∫      ∫ (    
 

 
)          
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       +

 

 

      *
      

 
      

 

 
+  

                              =                   = 22.83 x 10
5
. 

 

The Carnot Cycle 

On studying heat engines and thermal machines, one is faced with a question very relevant: 

Given two sources of thermal energy at two different temperatures, one at a high temperature 

TH and the other at a low temperature TL, what is the maximum conversion of heat drawn 

from the source at high temperature that can be converted into useful work in an ideal heat 

engine (reversible one) that operates continuously in a closed thermodynamic cycle? First, 



the Kelvin-Planck statement of the Second Law of Thermodynamics tells us that it is 

impossible to have a heat engine that will convert all the heat received from the high 

temperature source, QH, into useful work in a thermodynamic cycle. It is necessary to reject 

part of the received heat to the low temperature source, QL. In other words: it is impossible to 

have a 100% efficiency heat engine. A schematic of an operating heat engine according to 

Kelvin-Planck is shown in Fig. 3a. Second, Carnot devised that the heat engine that can 

achieve the maximum efficiency in continuously converting heat into work operating 

between the two heat sources is the one made up of four reversible processes as illustrated in 

the temperature-entropy diagram in Fig. 3b, which are: 

(a) process 1–2—temperature raise from TL to TH in an adiabatic reversible process 

(isentropic); 

(b) process 2–3—heat addition, QH, in an isothermic reversible process at TH; 

(c) process 3–4—temperature decrease from TH to TL in an adiabatic reversible process 

(isentropic); 

(d) process 4–1—heat rejection, QL, in an isothermic reversible process at TL. The thermal 

efficiency of any power cycle, gth; is the ratio of the network, W, and the heat received, QH. 
 

                                                                       
 

  
  

      

  
    

  

  
    ……1 

 

 

 

 

Where, the First Law has also been used, i.e., W = QH - QL. 

From the T-S in diagram Fig. 3b, it is possible to notice that both heat addition and rejected 

are associated with entropy variation, i. e. 

                                                                       QH = TH∆S    ……2 

and 

                                                                       QL = TL∆S    ……3 

 

Therefore, substituting equations 2 & 3 into Eq. 1, one obtains the final form of the Carnot 

efficiency, gC; which is: 

 

                                                                           
  

  
    ……4 

 

This remarkable result shows that the maximum conversion of heat into work in heat engine 

operating continuously between two heat sources is limited by the ratio between the two heat 

sources temperatures. The lower the temperature ratio, the higher the Carnot efficiency. As a 

final remark, no 100% conversion can take place because it would require either a 0 K low 

temperature source, or an extremely high temperature source (mathematically, an infinite 

one), or both. 

 

 

 

 

 

 

 



 
Fig. 3 a Schematics of a heat engine; b T-s diagram for a Carnot cycle. 

 

 

Diesel Cycle 

Diesel is the air standard thermodynamic cycle used in many internal combustion engines of 

many small to medium thermal power plants. The working principle of an internal 

combustion engine is somewhat different from a closed thermodynamic cycle as it occurs 

also with the Brayton cycle. Working fluid composition changes from plain air to combustion 

products and combustion and exhaustion processes are replaced by heat transfer processes. 

Therefore, there is an air standard cycle that reproduces the actual machine in order to capture 

its main features, such as the thermal efficiency. 

 

 

 
Fig. 2 Diesel cycle thermodynamic diagrams. a Pressure–volume diagram; b temperature 

entropy Diagram  

 

Figure 2 shows the two relevant diagrams for Diesel Cycle analysis. 



In Fig. 2a it is seen the pressure-specific volume diagram, while in Fig. 2b it can be seen the 

temperature-specific entropy diagram. The four ideal processes in a Diesel cycle are: 

(1) process 1–2—isentropic compression, wcomp in the air standard cycle. Air is compressed 

from pressure P1 to maximum pressure P2. In turbocharged engines, P1 is higher than the 

atmospheric pressure. In naturally aspirated engines, P1 is the atmospheric pressure. 

(2) process 2–3—heat addition, qH, at constant pressure, P2 = P3, takes place in the air 

standard cycle. In actual engine, fuel is sprayed into the compressed air as its combustion 

takes place generating heat.  

(3) process 3–4—in the air standard cycle compressed air at an initial high pressure and 

temperature T3 undergoes an isentropic expansion, wexp. In the actual engine, combustion 

products expand form high pressure P3 to pressure P4 generating shaft power. 

(4) process 4–1—heat rejection, qL, at constant volume, V4 = V1, occurs in the air standard 

cycle. In actual engine, the combustion products exhaust to atmosphere. Considering the ideal 

processes in Fig. 2, the following energy balances can be drawn. 

 

                              heat addition : qH  = h3 - h2 = CP(T3 – T2)      -----5 

                              heat rejection : qL = u4 - u1 = CP(T4 - T1)      …….6 

                              compression work : wcomp = u2 - u1 = CP(T2 -T1)   …….7 

                               expansion work : wexp = u3 - u4 = CP(T3 -T4)   …….8 

                               cycle net work : w = wexp - wcomp     ……9 

 

Thermal efficiency,    ; of a cycle is defined as the ratio between the cycle net work and the 

heat added, i.e.:  

 

                                       
 

  
        ……10 

 

By substituting Eqs. 5, 6 and 9 along specific heats ratio, it yields; 

 

                                        
  

  
    

         

         
    

     

         
    …… 11 

As the process 1–2 is isentropic, then 

 

                                        (
  

  
)
   

      
   

     …….12 

Where, rv is the compression ratio. In Diesel cycle fuel is injected into the combustion 

chamber up to a certain point known as the cutoff ratio defined by 

 

                                        
  

  
      ……13 

 

Also, after a few manipulations it is possible to relate T4 with T1, which is  

                                              
 
    …….14 

 

Also, considering the process 2–3 is an isobaric one, then 

 

                                                 …….15 

 



 
Fig. 3 Diesel cycle efficiency as a function of the compression ratio, rv, and cutoff ratio, rc 

 

 

By substituting Eqs. 12 through 15 into Eq. 11, one obtains 
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]       ……16 

Figure 3 shows the Diesel cycle efficiency as a function of the compression ratio, rv, and 

cutoff ratio, rc. 
  


